

Novel Phosphodiesterase 9 Inhibitor for the Treatment of Heart Failure

Overview

Drug Name	BioLink2022			
Description	Phosphodiesterase 9 (PDE9), a specifically hydrolytic enzyme with the highest			
	affinity for cyclic guanosine monophosphate (cGMP) among the phosphodiesterase			
	family, controls cGMP in cardiac myocytes and is strongly upregulated in human			
	heart failure, suggesting its potential as a promising therapeutic target in heart			
	failure. BioLink2022 is a highly selective oral PDE9 small molecule inhibitor in early			
	clinical development for the treatment of chronic heart failure.			
Target	PDE9			
Drug Modality	Small molecule			
Indication	Heart failure			
Product Category	Inhibitor			
Mechanism of Action	Inhibiting PDE9 to regulate cGMP level			
Status	Phase I			
Patent	Granted			

Collaboration Opportunity

Protheragen Inc. is actively seeking partnership for BioLink2022. Potential collaboration can be strategic alliance, licensing, or marketing agreement. We look forward to hearing from you.

Target

PDE9

Introduction	The family of phosphodiesterases (PDEs) are regulatory hydrolase enzymes the			
	play a crucial role in modulating cyclic nucleotides, including cGMP and cAMP,			
	which are involved in a wide range of physiological processes. Eleven			
	phosphodiesterase subfamilies have been identified. Among all PDEs, PDE9 has			
	the highest affinity for cGMP, making it an attractive target for inhibitors that			
	regulate cGMP levels. PDE9 has a high affinity for cGMP (Km = 70 nM) and a high			
	selectivity for cAMP (Km = 230 μ M).			
	The subtype PDE9A is the only known form of the PDE9 enzyme. The human			
	PDE9A gene is located on chromosome 21q22.3 and encompasses more than 20			
	exons spanning 122 kb. More than 20 splice variants of PDE9A have been			
	identified, exhibiting distinct subcellular distributions, which allow for modulation of			
	cGMP degradation in microdomains and fine control of specific signal transduction			
	pathways.			
Approved Name	Pheenbediesterase 04			
	Filosphodiesterase 9A			
Official Symbol	PDE9A			
Official Symbol Gene Type	PDE9A Protein coding			
Official Symbol Gene Type Synonyms	PDE9A Protein coding HSPDE9A2			
Official Symbol Gene Type Synonyms Ensembl	PDE9A Protein coding HSPDE9A2 ENSG00000160191			
Official Symbol Gene Type Synonyms Ensembl Gene ID	PDE9A Protein coding HSPDE9A2 ENSG00000160191 5152			
Official Symbol Gene Type Synonyms Ensembl Gene ID mRNA Refseq	Phosphodiesterase 9A PDE9A Protein coding HSPDE9A2 ENSG00000160191 5152 NM_001001567			
Official Symbol Gene Type Synonyms Ensembl Gene ID mRNA Refseq Protein Refseq	Phosphodiesterase 9A PDE9A Protein coding HSPDE9A2 ENSG00000160191 5152 NM_001001567 NP_001001567			
Official Symbol Gene Type Synonyms Ensembl Gene ID mRNA Refseq Protein Refseq OMIM	Phosphodiesterase 9A PDE9A Protein coding HSPDE9A2 ENSG00000160191 5152 NM_001001567 NP_001001567 602973			
Approved Name Official Symbol Gene Type Synonyms Ensembl Gene ID mRNA Refseq Protein Refseq OMIM UniProt ID	Phosphodiesterase 9A PDE9A Protein coding HSPDE9A2 ENSG00000160191 5152 NM_001001567 NP_001001567 602973 O76083			

Drug Modality

Small Molecule

BioLink2022 is an orally bioavailable small molecule. It is a potent PDE9 inhibitor that characterized by high selectivity, low brain penetration, and target tissue distribution. Preclinical data showed that BioLink2022 remarkably improved cardiac function and reversed ventricular remodeling in heart failure.

Indication

Heart Failure

Heart failure is a serious condition and a major cause of morbidity and mortality worldwide. The condition can be caused by any structural or functional abnormality that leads to elevated intracardiac pressure or to reduced cardiac output, whether at rest or during stress. As a result, cardiac output is inadequate to meet the body's metabolic needs and/or to accommodate venous return. Heart failure occurs when a sufficient number of myocardial cells are lost following injury or insult to the heart, such as that caused by ischemic heart disease, hypertension or diabetes. Heart failure may develop as a result of left- and/or right-sided ventricular failure. Leftsided heart failure is further divided into heart failure with reduced ejection fraction (HFrEF) or heart failure with preserved ejection fraction (HFpEF).

According to the Global Burden of Disease (GBD) study, the total number of patients with heart failure worldwide was 61.7 million in 2013, and the number of patients with heart failure worldwide increased 96.4% from 1990 to 2013. More than half of those were classified as severe. Heart failure morbidity is closely associated with disease severity. In patients with mild and well controlled disease, the disease can have little or no effect on quality of life. However, severe heart failure can limit even simple activities and generally proves fatal. In 2018, heart failure was the underlying cause in 83,616 deaths in the United States and was a contributing factor in 366,464 deaths, according to the American Heart Association.

Drug therapy is the mainstay of treatment for all patients with heart failure but should be accompanied by lifestyle modification (e.g., severe sodium restriction) and, if necessary, surgical intervention or device implantation. Although there is no definitive cure for heart failure, drugs can improve cardiac function and relieve symptoms, significantly prolonging survival and improving quality of life for patients.

Mechanism of Action

Inhibiting PDE9 to Regulate cGMP Level

The cyclic nucleotides cAMP and cGMP participate in the main pathways regulating cardiac and vascular functions and they act as second messengers for sympathetic and parasympathetic systems, nitric oxide (NO) and natriuretic peptides (NPs). The cardioprotective effect of NPs released in response to increased ventricular stretch in heart failure is mediated by the cGMP. PDE9 has the greatest affinity for cGMP of all the PDEs with specific affinity for the NP/cGMP signaling pathway. PDE9 is strongly upregulated in human heart failure and catabolizes cGMP leading to reduced intracellular cGMP concentration, suggesting that inhibition of PDE9 activity is a promising therapeutic target in heart failure. BioLink2022 inhibits PDE9 activity to increase circulating cGMP levels, promoting cGMP signaling.

Status

The Status of BioLink2022

BioLink2022 is being evaluated in the phase 1 clinical study in the United States for safety, tolerability, pharmacokinetics, and pharmacodynamics in healthy volunteers.

	Discovery/Optimization	Preclinical	Phase I	Phase II	Phase III
BioLink2022					